

Опыт эксплуатации ОТ на ПП Тобол. Перспективы применения ОТ в магистральных сетях

Начальник управления

Развития РЗА и Метрологии

Департамента РЗА метрологии и АСУ ТП

Шеметов А.С.

Архитектуры ЦПС

Согласно СТО 56947007-29.240.10.299-2020 выделяют 3 архитектуры ЦПС, особенности каждой из которых можно представить в таблице:

	1	1 2	To a
	Архитектура I	Архитектура II	Архитектура III
Использование протокола MMS	Да	Да	Да
Использование протокола GOOSE	Нет	Да	Да
Использование протокола Sampled Values	Нет	Нет	Да
Применение оборудования с поддержкой МЭК 61850 на подстанционном уровне	Да	Да	Да
Применение оборудования с поддержкой МЭК 61850 на уровне присоединения	Да	Да	Да
Применение оборудования с поддержкой МЭК 61850 на полевом уровне	Нет	Да	Да
Использование ШПДС	Нет	Да	Да
Использование ШПАС	Нет	Нет	Да
Использование ЦТТ и ЦТН, работающих по протоколу Sampled Values	Нет	Нет	Да

Архитектура III предполагает применение протокола Sampled Values для передачи данных измерений токов и напряжений от ЦТТ и ЦТН для классов напряжений 110 кВ и выше.

Требования к метрологическим характеристикам ЦИТ

Основные требования к цифровым измерительным трансформаторам:

- 1.ЦТН устанавливаются по тем же правилам, что и традиционные
- 2.Для ЦТТ используется укороченная шкала диапазонов номинальных токов, в которых ЦТТ может работать в рамках заявленного класса точности.

К метрологическим характеристикам ЦТТ в различных исполнениях номинальных токов предъявляются следующие требования:

Измерения для АИИСКУЭ, АСУТП, ПКЭ

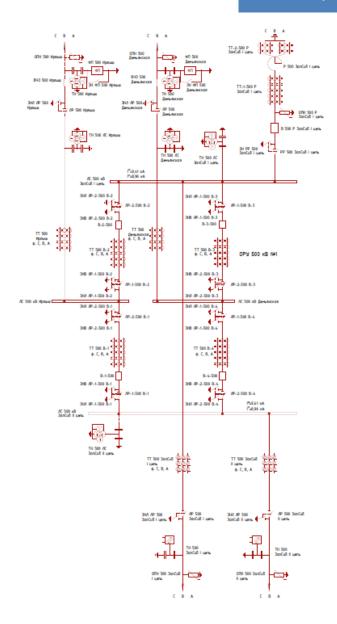
Диапазоны	Исполнение 1И (I _{макс} = 250 – 1000A)			Исполнение 2И (I _{макс} = 800 – 4000A)		
измерения тока	погрешность, %	значение тока, А действ.		погрешность, %	значение тока, А действ.	Угловая погрешность
TT	0,75	2.5	30'	0,75	8	30'
Нижний	0,35	12,5	15'	0,35	40	15'
диапазон	0,2	50	10'	0,2	160	10'
Верхняя	0,2	1200	10'	0,2	4800	10'
граница	0,5	1500.	20'	0,5	6400	20'

Измерения для РЗА

Диапазоны	Исполнение 1Р (для РЗА ВЛ и Т)			Исполнение 2Р (для РЗА ВЛ и стороны НН АТ)		
измерения тока	погрешность, %	значение тока, А действ.	Угловая погрешность	погрешность, %	значение тока, А действ.	Угловая погрешность
Нижняя	10	10	240'	10	30	240'
граница	5	20	120'	5	80	120'
точности	1	40	60'	1	110	60'
	1	36000.	60'	1	100000 .	60'
Верхняя	5	50000	120'	5	126000	120'
граница	10	55000.	240'.	10	140000.	240'
точности	30	90000	640'	30	200000	640'

Измерения для АИИСКУЭ, АСУТП, ПКЭ и РЗА

Лиапазоны	Исполнение 1ИР (для РЗА ВЛ и Т)			Исполнение 2ИР (для РЗА ВЛ и стороны НН АТ)		
измерения тока	погрешность,	значение тока, А действ.	Угловая погрешность	погрешность, %	значение тока, А действ.	Угловая погрешность
	0,75	2.5	30'	0,75	8	30'
Нижняя	0,35	12,5	15'	0,35	40	15'
граница	0,2	50	10'	0,2	160	10'
точности.	0,2	1200	10'	0,2	4800	10'
	0,5	1500.	20'	0,5	6400	20'
_	1	36000.	60'	1	100000 .	60'
Верхняя	5	50000	120'	5	126000	120'
граница	10	55000.	240'.	10	140000.	240'
точности	30	90000	640'	30*	200000	640'



Первый опыт реализации III архитектуры был получен при строительстве ПП 500 кВ «Тобол», необходимого для питания ЦРП 500/110 кВ «Западно-Сибирского комплекса глубокой переработки углеводородного сырья (УВС) в полиолефины мощность 2,0 млн. тонн в год с соответствующими объектами общезаводского хозяйства (ОЗХ)»

ПП 500 кВ «Тобол» выполнен в виде двух отдельных ОРУ 500 кВ, каждый со схемой 500-7 «Четырехугольник».

На ОРУ 500 кВ №1 в цепях ВЛ 500 кВ Тобол — ЗапСиб I цепь и ВЛ 500 кВ Тобол — ЗапСиб II установлены электронно-оптические трансформаторы тока и напряжения и реализованы цифровые системы защит, учёта электроэнергии и регистрации аварийных событий.

Перечень ИЭУ на ПП 500 кВ Тобол

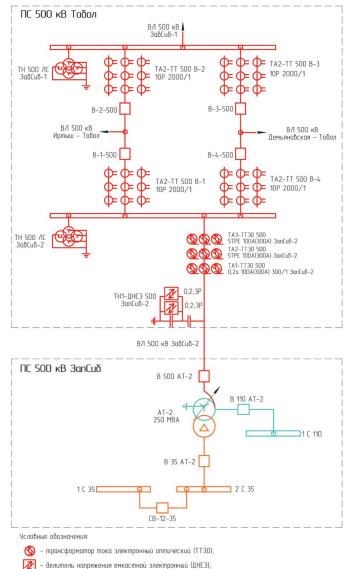
На данный момент перечень устройств, составляющих комплекс ЦПС следующий:

Nº	Наименование	Поставщик	Кол-во	Примечание
1	ТТЭО-Ш500-3-100(300)-0,2s-5ТРЕ65-УХЛ1-Т-АМ-В	АО "Профотек"	2	
2	ДНЕЭ-500-3-0,2-3Р- УХЛ1-Т-АМ-В-Р	АО "Профотек"	2	
3	КСЗ ШЭ2710 521	ООО НПП "Экра"	2	
4	РАС ШЭ2607 900	ООО НПП "Экра"	1	
5	ЭНИП-2-0-220-А1Е4-13	ООО ИЦ "Энергосервис"	2	
6	ENMU	ООО ИЦ "Энергосервис"	2	
7	ESM-SV	ООО ИЦ "Энергосервис"	2	
8	Redbox	ООО "Сименс"	2	
9	Redbox	ООО "Феникс контакт РУС"	2	
10	Медиаконвертер RUGGEDCOM RMC	ООО "Сименс"	2	
11	Синхронный приемопередатчик Sync-Transceiver	ООО "Сименс"	1	
12	Коммутатор Ruggedcom RSG2488	ООО "Сименс"	7	
13	Коммутатор Ruggedcom RSG2300	ООО "Сименс"	10	
14	Siprotec 5	ООО "Сименс"	1	
15	Преобразователь интерфейса MEINBERG	"MEIBBERG" GmbH&Co.KG	2	
16	TOP 300 KC3 813	000 «Релематика»	2	
17	ARIS EM45	ООО "Прософт"	2	
18	Сервер времени СВ-04	ООО НПП "Экра"	1	2 модуля

Основные выявленные недостатки

Проблема	Источник	Возможные причины	Статус
Недостаточная проработка цифровой части в изначальном проекте.	Проектная документация	Недостаток опыта подрядчика, отсутствие НТД на момент проектирования	Устранена. Разработан Технорабочий проект «Информационная подсистема ЦПС ЕНЭС ПС 500кВ Тобол», устранивший данные недостатки
Единичные недостоверные значения в потоке цепей напряжения, которые фиксируются только РАС «ЭКРА» и КСЗ «Релематика» причем с несовпадением по времени, пуск по 3Uo	ДНЕЭ-500 кВ	Выносной модуль ДНЕЭ	Не устранена. Планируется замена на новую версию
Проблемы с ЭМС электронной части электронно-оптических трансформаторов тока	ТТЭО-500, ДНЕЭ 500	Влияние ВЧ помех, приходящих в ЭОБ по цепям питания	Устранена. Проведена доработка -установлены фильтры питания, заменена система заземления в шкафах электронно-оптических блоков.
Периодическое появление сигналов «Неисправность 9-2», искажение формы синусоиды по каналам цепей напряжения	ИЭУ, СОЕВ	Сбой коммутаторов/ сбой серверов времени.	Частично устранена. Обновлены прошивки СОЕВ. Система в процессе мониторинга. Невозможно определить точную причину сигнала «Неисправность 9-2», т.к. РАС не регистрирует флаги (синхронизация, валидность, пропажа потока и т.д.)

Опыт постановки АТ под напряжение


Для оценки работоспособности информационной подсистемы в целом, а также для сравнения рабочих характеристик измерительных трансформаторов во время броска намагничивающего тока (БНТ) был проведен опыт постановки АТ-2 250 МВА под напряжение.

Осциллограммы для анализа, были записаны регистратором аварийных событий (РАС), который позволяет регистрировать аналоговые и цифровые значения одновременно. При этом РАС подключен на сумму токов по двум плечам (В-1 и В-4) для получения значений аналогового тока на ВЛ 500 кВ ЗапСиб-2.

Основные выводы по результатам анализа осциллограмм:

- 1. Сравнительный анализ работы электромагнитных и оптических ТТ во время БНТ при постановке АТ-2 250 МВА под напряжение показал явные преимущества оптических ТТ. Это обусловлено отсутствием в оптическом ТТ явления намагничивания, что позволяет, в свою очередь, получать с них более достоверные данные о состоянии работы сети без искажений.
- 2. Гармонических анализ показал, что уровень передачи DCсоставляющей для оптических ТТ выше по сравнению с электромагнитными TT.

При этом наблюдается снижение пикового значения, а также уменьшение действующего значения тока (RMS). DC-составляющая с электромагнитного TT со временем затухает, искажая тем самым представление терминалов РЗА о переходном процессе в системе. Таким образом, оптические TT потенциально позволяет выполнить дифференциальную защиту Т (АТ) с повышенной чувствительностью и быстродействием.

Опыт постановки АТ под напряжение

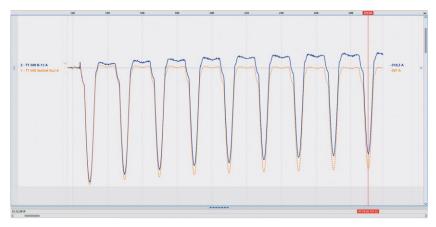


Рис.1 Насыщение электромагнитных ТТ (синий цвет) и оптических (желтый цвет) ТТ

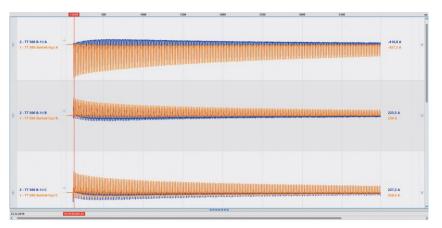


Рис.3 Смещение кривой тока на электромагнитных ТТ (синий цвет) относительно кривой тока с оптических ТТ (желтый цвет)

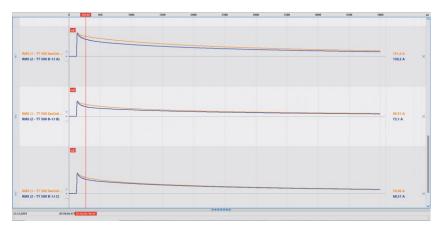
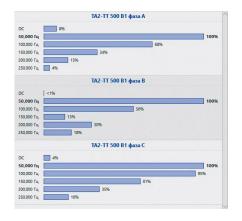



Рис.2 Разница действующего значения БНТ для с электромагнитных ТТ (синий цвет) и оптических (желтый цвет) ТТ

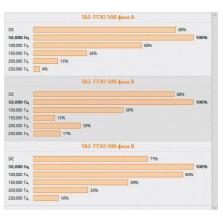


Рис.4 Гармонический состав электромагнитных ТТ (синий цвет) и оптических ТТ (желтый цвет) в момент времени равный 400 мс

Перспективы

- 1. Система ЦПС на ПП Тобол продолжает функционирование в рамках опытной эксплуатации, с сохранением действия всех устройств на сигнал.
- 2. По-прежнему остается ряд вопросов в части синхронизации времени и регистрации аварийных событий.
- 3. Рабочая группа, состоящая из представителей ПАО «ФСК» и представителей производителей оборудования продолжает совместную работу над устранением выявленных недостатков.
- 4. Необходимо большее количество пилотных проектов с III архитектурой, в том числе и других классов напряжения, для выявления возможных проблем и отладки совместной работы ОТ и ИЭУ и стандартизации применяемых решений.
- 5. Так же продолжает обсуждаться вопрос о проведении опыта КЗ на ВЛ 500 кВ, для еще более детального сравнения работы традиционных и оптических измерительных трансформаторов в переходных режимах.

Это позволит дополнительно рассмотреть перспективы применения электронно-оптических трансформаторов в магистральных сетях.

Разработка систем резервирования

Крайне важной перспективной разработкой является возможность автоматического мгновенного переключения терминала P3A с основного SV-потока на резервный. Такое решение позволит значительно повысить надежность измерительных цепей в за счет:

- -аппаратного резервирования ЭОБ
- -резервирования ЛВС по PRP
- -переключения между потоками

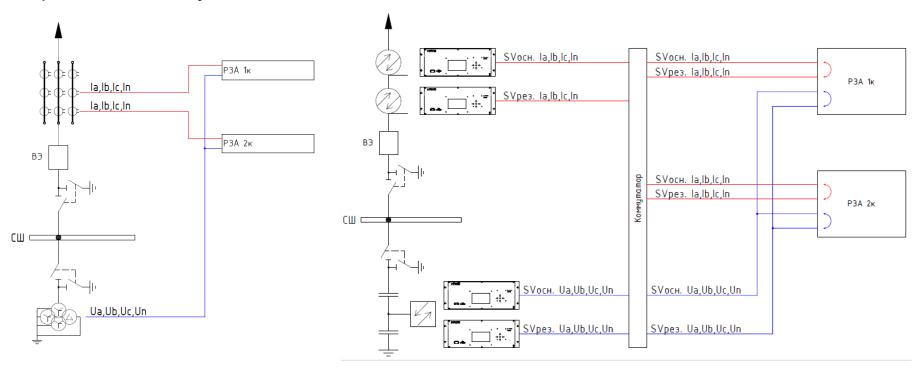


Рис.1 Традиционное распределение РЗА по TT и TH

Рис.2 Перспективное распределение ИЭУ по ЦИТ

